SURFACE RUN-OFF WATER MITIGATION

Digital design framework to Mitigate urban flooding event

Manish Naresh Bilore Tutor : Tom Svilans

Spring 2021

Royal Danish Academy of Fine Arts School of Architecture CITA studio Computation in Architecture Spring 2021

PARTICLE SIMULATION

Meso Scale Tool for Water Behaviour Study

Analysing the Topography against Surface Water Rise and Extreme Rainfall Event

Rainfall Interaction

Number of particles_10,000Brownian Force_____0.5Drag_____0.1

Surface Level Water Rise Interaction

Number of particles_10,000 Brownian Force_____0.5 Drag_____0.1

Number of Time Frame Of Simulations: 15000

Combined Tool for Rainfall and Surface water rise

Number of particles_	_20,000
Brownian Force	0.5
Drag	0.1

TOPOGRAPHY CHANGE

Experimental setup to determine patterns of landscape change

Series of hydrodynamic simulations to study the implications of water flow across parametric models to visualize different runoff and collection patterns by adjusting -

- Slope-to-depth ratios
- Placement of modification pattern

to guide and collect water across 500 time frames

Fluid Type 01 --- 250 particles To represent flash flood

Fluid Type 02 --- 1000 particles To represent continuous rainfall

Fluid Type 02 Cut Operation

Test 03 Slope Gradient 15%

Test 04 Slope Gradient 15%

MEREOLOGICAL APPROACH TO LANDSCAPE DESIGN

Method to mitigating flood water on Urban Scale

Intervention

05 Retaining Wall

FLOOD-ABLE PARK - AMPHITHEATRE

Marking performance of functional elements

Determine the water flow mitigation grade for each element that enables the placement of the element in the procedural script automatically

Test to measure water flow character after the intervention

01 Amphitheatre

Control Setup

Innundation

Number Of Houses Affected: 12/21

Slope To Depth Ratio

: 15 degrees

Intervention Setup

Number Of Houses Affected: 8/16

Slope To Depth Ratio

: 15 degrees

POROUS WATER CHANNEL - GEOCELL / GABION

Marking performance of functional elements

Determine the water flow mitigation grade for each element that enables the placement of the element in the procedural script automatically

Test to measure water flow character after the intervention

03 Drain Channel

Control Setup

Innundation

Number Of Houses Affected : 12/21

Slope To Depth Ratio

: 15 degrees

Intervention Setup

Number Of Houses Affected: 10/13

Slope To Depth Ratio

: 15 degrees

ARCHITECTURAL SKIN

Blending the Functional Elements into the Urban Fabric

During normal days the resilient infrastructure is used as urban amenities like public parks and play areas

04 Underground Tank and Channels

LANDSCAPE TRANSFORMATION PROMPT

Procedural model to prompt design intervention based on the fluid

Experiment to determine the landscape layout for the most conducive water mitigation

Particle Simulation For Rainfall & Surface Water Rise

Identify innundation areas

Identify zones of accelerated water flow

Prompt Channel Placement

Identify quick trench placement to ameliorate innundation

Procedural Placement Of Functional Elements

Based on empiral data & particle simulation, suggest optimum placement of mitigating elements

MAPPING THE WORK FLOW

Comparative study of flooding and landscape response

With the aim of developing global strategies – applicable to other cities, – and identifying specific strategies that are applicable to particular cities.

Set of tactics deployed at the regional and urban scale in Coastal cities to provide a layer of resilience to the urban fabric

#.

Miami

Oslo

MACRO SCALE

Responsive Landscape, Water Mitigation,

Project Iteration Loop

City Model to propose and test design interventions

Terrain Model to test Environmental actions - UHI and Flooding

Model of the Existing Blue Green Infrastructure

Copenhagen Water scape

RAINFALL SIMULATION

Iteration In Amager To Test The Proposed Work-flow

Particle Simulation for Rainfall to determine areas inundated by rain

S

Copenhagen

Amager

Simulation For Extreme Rainfall Observed parameters in particle simulation-Speed Accumulation for 100,000 particles across 15,000 time steps

Simulation For Normal Rainfall Observed parameters in particle simulation-Speed Accumulation for 10,000 particles across 15,000 time steps

Tårnby

MAKING A POROUS URBAN FABRIC

Identifying the intervention area of required blue green infrastructure

Observing the Fluid flow on a city block and proposing interventions and block redevelopment. Area marked for design intervention may be different to the areas affected by flood.

Identfying flood prone area and mitigation strategies

Area affected by innundation

Tårnby

Area marked for re-development to mitigate flooding

POROUS BUILT FORM

Strategies for the built form

A porous strategy for the built form where modules of tetrahedrons acting as massing volume for frame structure that aggregate together. The aggregation of simple tetrahedron of load transferring rod results is a space

Urban Scale Strategy

Architectural Scale Strategy

INTEGRATED WETLANDS

Plan of a Porous Urban Form for Amager

Royal Danish Academy of Fine Arts School of Architecture CITA studio Computation in Architecture Spring 2021

Surface Run-off Water Mitigation

Work-flow for Responsive Landscape transformation

For MA in Computation in Architecture

Manish Naresh Bilore Under the guidance of Tom Svilans

